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Abstract
We discuss the covariant formulation of local field theories described by the
companion Lagrangian associated with p-branes. The covariantization is
shown to be useful for clarifying the geometrical meaning of the field equations
and also their relation to the Hamilton–Jacobi formulation of the standard
Dirac–Born–Infeld theory.

PACS numbers: 1125, 1130, 1110E, 0220

1. Introduction

A significant class of equations of motion occurring in physics have the property of general
covariance, i.e. the property that the solutions of these equations remain solutions under a
large set of transformations. The best known examples are the equations of general relativity,
Yang–Mills and the Maxwell equations in terms of the gauge fields. The fact, realized by the
cognoscenti, that the origin of covariance in those examples could be unified by the construction
of a covariant derivative became generally known in the mid 1970s with the adoption of fibre
bundle language in the discussion of connections. In this paper we discuss a further example of
the equations of motion arising from what we have called the companion Lagrangian, which
may be considered as a continuation of the Dirac–Born–Infeld (DBI) equations describing
D-branes to the situation where the target space is of smaller dimension than the base space.
The genesis of these equations lies in the idea of replicating for strings and branes the situation
in ordinary quantum mechanics in which the classical point particle Lagrangian is replaced by
the quantum Klein–Gordon Lagrangian [1–5].

Let φi be n fields each dependent upon coordinates xµ (µ = 1, 2, . . . , d > n) of the base
space. Then, in its simplest form, the companion Lagrangian L is

L =
√

det

∣∣∣∣ ∂φi

∂xµ

∂φj

∂xµ

∣∣∣∣. (1)
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The simplest example of an equation arising from this for n = 1, d = 2 is the Bateman
equation,

(
∂φ

∂x1

)2
∂2φ

∂x2
2

+

(
∂φ

∂x2

)2
∂2φ

∂x2
1

− 2

(
∂φ

∂x1

)(
∂φ

∂x2

)
∂2φ

∂x1∂x2
= 0 (2)

references [6, 7] and for n = 1, arbitrary d the companion equation is a sum of
(
d

2

)
such

Bateman expressions set to zero. It is known that the solution of (2) is given implicitly by
solving the equation,

x1F(φ(x)) + x2G(φ(x)) = c (3)

where F,G are arbitrary functions and c is a constant. From the form of the solution, it is
obvious that the Bateman equation is invariant under any change of φ → φ′(φ). Another
example is for two fields φ, ψ in three dimensions, in which the companion equation can be
recast in the form,

det

∣∣∣∣∣∣∣∣∣

0 0 φ1 φ2 φ3

0 0 ψ1 ψ2 ψ3

φ1 ψ1 φ11 φ12 φ13

φ2 ψ2 φ12 φ22 φ23

φ3 ψ3 φ13 φ23 φ33

∣∣∣∣∣∣∣∣∣
= 0 (4)

with a similar equation with second derivatives of ψ , where subscripts denote derivatives, e.g.,
φµ = ∂φ/∂xµ. These equations have been studied in [7] as one of the universal field equations
and shown to be covariant under any arbitrary redefinition of the fields. This remarkable
property also holds for the general (n, d) case, i.e. the companion equation is invariant under
any change of fields φi → φ′i (φj ), which will be transparent in the following covariant
formulation. This symmetry corresponds to the general reparametrization invariance in the
DBI formulation of p = n−1 branes, where the theory with d fields Xµ(τ i) is invariant under
reparametrization of the n world volume coordinates τ i .

In the next section, we reconsider the companion theory in a manifestly covariant way and
clarify the geometrical meaning of the companion equations. In section 3, we study the relation
between the Hamilton–Jacobi (HJ) formulation of the DBI theory and the companion theory,
showing that the latter possesses a class of solutions of the former, which are characterized by
a divergence-free condition of a degenerate metric defined in the latter theory. The relation
between the DBI and companion theories is demonstrated in section 4 explicitly in the particle
(n = 1) case in an arbitrary number of dimensions.

2. Covariant formulation

2.1. Notation

For simplicity, we work ind-dimensional Euclidean space with the flat metric δµν and the totally
antisymmetric tensor εν1ν2...νd with ε12...d = +1. Indices with an arrow above them represent
the set of several indices. �µ, �ν, �ρ, �σ each have n components, e.g., �µ = {µ1, µ2, . . . , µn}.
�τ , �κ, �η each have (d − n) components, e.g., �κ = {κ1, κ2, . . . , κd−n}. If the (double) prime ′

(′′) is used for the indices, �µ, �ν or �τ , �κ , then their components start from the second (third)
entry of un-primed ones, e.g., �µ′ = {µ2, . . . , µn}, �κ ′ = {κ2, . . . , κd−n}, �µ′′ = {µ3, . . . , µn}
and �κ ′′ = {κ3, . . . , κd−n}.
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2.2. Jacobians

The companion equations may be expressed more succinctly in terms of the Jacobians, which
are defined as

J�κ = Jκ1κ2...κd−n
= εκ1κ2...κd−nν1ν2...νnφ

1
ν1
φ2
ν2
. . . φn

νn

= 1

n!
ε�κ�ν εi1...inφ

i1
ν1
. . . φin

νn
≡ 1

n!
ε�κ�ν J̃�ν . (5)

The derivatives of the Jacobians are

∂J�κ
∂φi

µ

= 1

(n − 1)!
ε�κµ�ν ′ εii2...inφ

i2
ν2
. . . φin

νn
≡ 1

(n − 1)!
ε�κµ�ν ′ J̃i,�ν ′ . (6)

Using the Jacobians, the companion Lagrangian (1) is written as

L =
√

det

∣∣∣∣ ∂φi

∂xµ

∂φj

∂xµ

∣∣∣∣ =
√

1

(d − n)!
J�κJ�κ =

√
1

n!
J̃ �µJ̃ �µ (7)

from which the equation of motion is derived,

∂2L
∂φi

µ∂φ
j
ν

φj
µν = 1

(d − n)!2
L−3

(
J�τ J�τ

∂J�κ
∂φi

µ

∂J�κ
∂φ

j
ν

− J�κ
∂J�κ
∂φi

µ

J�τ
∂J�τ
∂φ

j
ν

)
φj
µν = 0. (8)

As shown in [8], using the identity of epsilon tensors,

εµν2ν3...νd ερ1ρ2...ρd
= ερ1ν2ν3...νd εµρ2...ρd

+ ερ2ν2ν3...νd ερ1µρ3...ρd
+ · · · + ερdν2ν3...νd ερ1ρ2...ρd−1µ

(9)

where the indexµ is swapped with each index in the second epsilon, we can rewrite the equation
as

∂2L
∂φi

µ∂φ
j
ν

φj
µν = 1

(r + 1)!(r − 1)!
L−3

(
∂J�κ
∂φi

τ

∂J�κ
∂φ

j
τ

)
Jµ�τ ′Jν �τ ′φj

µν = 0 (10)

where r = d − n. Under the assumption det |∂J�κ/∂φi
τ ∂J�κ/φ

j
τ | �= 0, we obtain the companion

equation,

Jµ�κ ′Jν�κ ′φi
µν = 0. (11)

This equation may be interpreted as a sum of universal field equations [7]. It will be shown
below that the left-hand side (LHS) of this equation appears as a covariant derivative acting
on the field φi

µ.
For later use, we note two useful identities for the Jacobians,

∂J�κ
∂φ

j
µ

φi
µ = δij J�κ (12)

∂J�κ
∂φ

j
ν

φj
µ = (r + 1)δµ[νJ�κ] = (δµνJ�κ − δµκ1Jνκ2...κr − · · · − δµκr Jκ1...κr−1ν). (13)

From the identities, we obtain

∂L
∂φ

j
µ

φi
µ = δijL

∂L
∂φ

j
ν

φj
µ = L

(
δµν − 1

(r − 1)!
L−2Jµ�κ ′Jν�κ ′

)
. (14)
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2.3. Induced metric

The field φi(x) is the mapping from the d-dimensional base space with the flat metric δµν
to the n-dimensional space labelled by {φi}. The induced metric Gij on the φ-space is then
defined as the pullback of δµν ,

Gij = φi
µφ

j
µ. (15)

The metric Gij → (∂φ′i/∂φk)(∂φ′j /∂φl)Gkl transforms under the reparametrization of φi , as
anticipated. The inverse of Gij can be obtained explicitly by using the identities (12) and (13),

Gij = 1

(r + 1)!
L−2 ∂J�κ

∂φi
µ

∂J�κ
∂φ

j
µ

= 1

(n − 1)!
L−2J̃i, �µ′ J̃j, �µ′ . (16)

Note that the square of the Lagrangian can be written as L2 = det |Gij |. Having obtained Gij ,
we go back to the base space again with the induced metric gµν , the pullback of Gij ,

gµν = φi
µφ

j
νGij = 1

(n − 1)!
L−2J̃µ �µ′ J̃ν �µ′

= δµν − 1

(r − 1)!
L−2Jµ�κ ′Jν�κ ′ (17)

where the identity (13) has been used in the last line. The metric gµν is manifestly invariant
under the reparametrization of φi , although it is degenerate in our d > n case. Note that gµν
is the flat metric δµν for d = n, while it cannot be defined for d < n. Let us write down the
metrics explicitly in the particle (n = 1) and string (n = 2) cases,

n = 1 gµν = φµφν

φλφλ

(18)

n = 2 gµν = J̃µρJ̃νρ

det |φi
λφ

j

λ |
= −L−2

∣∣∣∣∣∣
0 φ1

ν φ2
ν

φ1
µ φ1

λφ
1
λ φ1

λφ
2
λ

φ2
µ φ2

λφ
1
λ φ2

λφ
2
λ

∣∣∣∣∣∣ . (19)

In these expressions, it is easy to see that φi
µ are eigenvectors of gµν with eigenvalue +1. This

important property of gµν holds for general (n, d),

gµνφ
i
ν = φj

µGjkG
ki = φi

µ (20)

which leads us to define the projection operator Pµν = (δµν −gµν) acting on the d-dimensional
vector space V in the base space. Then V is decomposed as the sum of two subspaces Vn and
Vr . The latter is the (d − n)-dimensional subspace orthogonal to the n vectors φi

µ, while the
former is spanned by a linear combination of φi

µ. For an arbitrary Vµ ∈ V , we have

Vµ = gµνVν + PµνVν = Vi φ
i
µ + PµνVν. (21)

We introduce the dual vectors Yjν = L−1(∂L/∂φ
j
ν ) = Gjkφ

k
ν of φi

µ, which satisfy

φi
µ Yjµ = δij φi

µ Yiν = Yiµφ
i
ν = gµν (22)

then the component Vi of the vector Vµ in (21) is expressed as Vi = VµYiµ. We will see in the
next section that the connection for the reparametrization φi → φ′i is constructed in terms of
the fields φi

µ and Yjν .



Covariant formulation of field theories associated with p-branes 3041

2.4. Induced connection

To construct the covariant formulation under the transformationφi → φ′i (φj ), we first consider
the geometry of the n-dimensional space labelled by coordinates {φi}, with the metric G(0)

ij (φ).
The standard way to build covariant equations is to use the covariant derivative ∇j , with a
connection (i

jk ,

∇jV
i = ∂V i

∂φj
+ (i

jkV
k. (23)

The assumption of the covariant constancy of the metric, ∇jG
(0)
ik = 0, and the torsion-free

condition give the form of a Christoffel symbol to the connection (i
jk . The pullback of (i

jk

onto the base space is obtained by acting with the factors φ
j
ν φ

k
µφ

l
λ on it and using the relation

φ
j
ν ∂j = ∂ν ,

(φm
νµ + φj

ν φ
k
µ(

m
jk) φ

l
λG

(0)
lm = 1

2 (∂νg
(0)
λµ + ∂µg

(0)
λν − ∂λg

(0)
νµ) ≡ (̃λνµ(g

(0)) (24)

where g
(0)
λµ = φl

λφ
k
µG

(0)
lk . The substitution of the induced metric Gij = φi

µφ
j
µ into (24) leads

us to the connection Kν
i
k ,

Kν
i
k = φj

ν(
i
jk|G(0)=G = −Ykµ∇̃νφ

i
µ (25)

where ∇̃νφ
i
µ = φi

νµ − (̃λνµ(g) φ
i
λ, with gµν , the degenerate metric in (17).

Then the induced derivative ∇νV
i = ∂νV

i + Kν
i
kV

k is manifestly covariant under the
reparametrization of φi . We, however, note that the substitution G

(0)
ij = Gij in (25) cannot

be justified since the induced metric Gij is not a function of φi but φi
µ, where the relation

φ
j
ν ∂j = ∂ν used above is incorrect when it acts on Gij . Strictly speaking, the connection

Kν
i
k is not derived from (i

jk in the φi-space but is defined in the analogy with φ
j
ν(

i
jk(G

(0)).

Another remark is that (̃λνµ(g) in (25) looks like a connection in the base space. In fact, it can
be shown that the derivative ∇̃νφ

i
µ behaves as a tensor under the reparametrization xµ → x ′µ

preserving the form of the flat metric δµν ; ∂λx ′µ∂ρx ′ν δλρ = δµν .
The covariant derivative ∇ν acting on φi

µ becomes

∇νφ
i
µ − (̃λνµφ

i
λ = ∂νφ

i
µ + Kν

i
kφ

k
µ − (̃λνµφ

i
λ = Pµλ∇̃νφ

i
λ (26)

or equivalently, using Pµλφ
i
λν = ∂νgµλφ

i
λ, we have

∇νφ
i
µ = (λνµφ

i
λ (λνµ = ∂νgµλ + gµρ(̃λνρ. (27)

The right-hand side (RHS) of (26) vanishes when it acts upon φ
j
µ, which gives

∇νG
ij = 2φ(i

µ∇νφ
j)
µ = 2φ(i

µ (̃λνµφ
j)

λ = φi
λφ

j
µ∂νgλµ (28)

in which the RHS is actually zero due to the identity,

∂νgλµ = (δλσ − gλσ ) Ykµφ
k
σν + (δµσ − gµσ ) Ykλφ

k
σν. (29)

Hence we obtain the metricity condition ∇νG
ij = 0 (and ∇νGij = 0) in the base space. The

covariant derivative of gµν is also obtained from (27) and the identities gµρgρν = gµν and
∂νgρλ − (̃ρνλ − (̃λνρ = 0,

∇λgµν = (ρλµgρν + (ρλνgρµ = ∂λgµν (30)

as anticipated since gµν is a scalar under the field redefinition of φi .
Finally, let us take the contraction µ = ν in (27), then we have

∇µφ
i
µ = (λµµ φi

λ = ∂µgµλ φ
i
λ + gµρ(̃λµρ φ

i
λ. (31)
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The second term of the RHS vanishes due to the identity (29), which gives, with the formula
of gµν in (17),

∇µφ
i
µ = ∂µgµλ φ

i
λ = Pµλφ

i
µλ = 1

(r − 1)!
L−2Jµ�κ ′Jλ�κ ′φi

µλ = 0 (on shell). (32)

Here, the companion equation (11) appears as the covariant derivative ∇µ acting on φi
µ, which

explicitly shows the general covariance of the companion equation.

3. DBI theory versus companion theory

The standard formulation of branes is given by a mapping Xµ(τ i) from the n-dimensional
world volume to the d-dimensional target space. Let us consider the Lagrangian defined with
derivatives of Xµ(τ i),

Lp = (det |gij |)p gij = ∂Xµ

∂τ i

∂Xµ

∂τ j
. (33)

The equation of motion for Lp is written, as in [9], in terms of gij and the Christoffel symbol
(k
ij = gkm∂mX

λ ∂i∂jX
λ,

gij ∂i∂jX
µ − ∂iX

µgjk(i
jk + (2p − 1)∂iX

µgij(k
jk = 0. (34)

Contraction of this equation with ∂lX
µ yields

(2p − 1)(k
lk =

(
1 − 1

2p

)
L−1

p ∂lLp = 0 (35)

and the other terms cancel. As in the previous discussion either p = 1
2 , or else ∂lLp = 0. This

leaves as equations of motion in all cases

gij ∂i∂jX
µ − ∂iX

µgjk(i
jk = (δµλ − gDBI

µλ ) gij ∂i∂jX
λ = 0 (36)

where the degenerate metric gDBI
µλ = gkl∂kXµ∂lXλ. The second equation explicitly shows, via

the identity gDBI
λµ ∂lX

µ = ∂lX
λ, that the number of independent equations of motion is d − n.

In the following, we will concentrate on the DBI Lagrangian LDBI = MnL1/2, with the mass
parameter M .

As is known in the particle case (n = 1), we introduce a field φ(x) as a HJ
function for LDBI, which gives the canonical conjugate momentum of Xµ(τ) via the formula
pµ(τ) = ∂µφ(x = X(τ)). The HJ equation is then obtained from the constraint for pµ as
p2 − M2 = (∂µφ)

2 − M2 = 0. The generalization of the HJ formulation to string and brane
cases has been discussed in [4, 5, 10–13]. In their paper [5], Hosotani and Nakayama gave
a simple derivation of the HJ equation for general n > 1 cases. They start with the DBI
(Nambu–Goto) action for the string (n = 2);

I2 = M2
∫

dτ dσ
√

det |gij | = M2
∫

dτ dσ

√
1

2

(
∂(Xµ,Xν)

∂(σ, τ )

)2

. (37)

The covariant momentum tensor pµν given by

pµν = M2

2

∂(Xµ,Xν)

∂(σ,τ )√
1
2

(
∂(Xµ,Xν)

∂(σ,τ )

)2
pµνp

µν = M4

2
(38)

satisfies the equation of motion

∂(pµν,X
ν)

∂(σ, τ )
= 0 (39)
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which is an alternative form of equation (36). One may think of the solutions for the Xµ as
being functions of σ, τ with d − 2 additional parameters ϕ3, . . . , ϕd . Then pµν(σ, τ ;ϕa) can
be considered as a function of the Xµ. Following Hosotani and Nakayama, we choose the
parameters σ, τ in such a way that the area element of the world sheet with fixed ϕa is

4M−2pµν dσ dτ = dXµ dXν. (40)

Choosing φ1 = Mσ and φ2 = Mτ , we obtain the relation between ∂iX
µ and ∂µφ

i ,
pµν = J̃µν = ∂µφ

1∂νφ
2 − ∂νφ

1∂µφ
2, which gives the HJ equation for strings,

1

2
J̃µν J̃µν = (∂µφ

1)2(∂νφ
2)2 − (∂µφ

1∂µφ
2)2 = M4

4
. (41)

It is easily seen that the equation of motion (39), thanks to the Bianchi identity for Jacobians
∂[λJ̃µν] = 0, is derived from the HJ equation as

∂(pµν,X
ν)

∂(σ, τ )
= ∂λJ̃µν

∂(Xλ,Xν)

∂(σ, τ )
= 4M−2∂λJ̃µν J̃λν = M−2∂µ(J̃λν J̃λν) = 0. (42)

These results can be generalized straightforwardly to membrane and general p = n− 1-brane
cases,

In = Mn

∫
dnτ

√
det |gij | = Mn

∫
dnτ

√
1

n!

(
∂(Xµ1 , . . . , Xµn)

∂(τ1, . . . , τn)

)2

. (43)

The covariant momentum tensor p �µ = pµ1···µn
is set to be equal to the Jacobian for n fields

in (5),

p �µ = M2n

n!
L−1

DBI

∂(Xµ1 , . . . , Xµn)

∂(τ1, . . . , τn)
= εi1...inφ

i1
µ1

. . . φin
µn

= J̃ �µ (44)

which leads to the HJ equation,

1

n!
J̃ �µ J̃ �µ =

(
Mn

n!

)2

. (45)

The equation of motion ∂(pµ1µ2···µn
,Xµ2 , . . . , Xµn)/∂(τ1, τ2, . . . , τn) = 0 is solved by the HJ

equation and the Bianchi identity ∂[λJ̃ �µ] = 0 as in the string case. It is interesting to note
that, under relation (44), the degenerate DBI metric in (36) turns out to be the companion
metric (17),

gDBI
µλ = gkl∂kXµ∂lXλ = 1

(n − 1)!

(
n!

Mn

)2

pµ�ν ′pλ�ν ′ = gµλ(X(τ)). (46)

As for the relation between the DBI and the companion theories, it is obvious that the HJ
equation (45) in the former is the constancy condition of the Lagrangian (7), L = Mn/n!, in
the latter. Thus, any field configuration making the companion Lagrangian constant solves
the DBI equation of motion. Here, let us consider solutions of the companion equation (11)
in the configuration space of non-zero constant Lagrangian, which represent special points
of the space to maintain the value of the Lagrangian (up to a total derivative) under any
infinitesimal variation of fields φi . As shown in (32), the companion equation is proportional
to ∇λφ

i
λ = ∂λgλµφ

i
µ, which would be regarded as a part of the decomposition (21) for ∂λgλµ

into the n-dimensional subspace Vn,

∇λgλµ = ∂λgλµ = Vi φ
i
µ + (δµν − gµν)∂λgλν (47)
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where Vi = ∂λgλνYiν = Gij∇νφ
j
ν . The second term in the RHS of (47) can be rewritten by

using another decomposition of ∂λgλν = ∂λ(Yjλφ
j
ν ) = ∂λYjλ φ

j
ν + L−1∂νL, where we used

Yjλ = L−1(∂L/∂φ
j

λ), as

(δµν − gµν) ∂λgλν = (δµν − gµν)L−1∂νL = 0 if L = Mn/n! (48)

showing that the subspace of HJ solutions given by the companion equation with
constant Lagrangian is characterized geometrically by the divergence-free condition, ∇λgλµ =
∂λgλµ = 0.

4. Solutions of companion and HJ equations

As has been remarked already, the companion equation (11) for a single field (n = 1) in d

dimensions takes the form,∑
µ

∑
ν �=µ

(
(φν)

2φµµ − φµφνφµν

) = 0 (49)

i.e. a sum of
(
d

2

)
Bateman equations. A large class of solutions may be obtained by choosing d

arbitrary functions Fµ(φ) subject to the constraint,∑
µ

Fµ(φ)xµ = c = const (50)

and solving this as an implicit equation for φ. This works because this equation implies that

φµ = −Fµ

Fσ
′xσ

φµν = Fµ
′Fν + Fν

′Fµ(
Fσ

′xσ
)2 − FµFν

Fλ
′′xλ(

Fσ
′xσ
)3 (51)

where the prime denotes derivatives of Fµ with respect to φ. These results guarantee that (49)
is satisfied. Solutions of this class may be extended to the case of more than one field in the
following way. With an ansatz of the form,∑

µ

Fµ(φ1)xµ = c1 = const
∑
µ

Gµ(φ
2)xµ = c2 = const (52)

which are solved for φ1 and φ2, a similar reasoning shows that the companion equation of
motion in an arbitrary number of dimensions, which is the sum of

(
d

3

)
universal field equations

for two fields in three dimensions, admits this implicit solution, which, in virtue of the
covariance property, can be generalized by replacing the fields φ1 and φ2 by two arbitrary
functions of them. This class of solutions may be generalized to an arbitrary number of fields
in an obvious manner.

It can be easily seen that the set of companion solutions (50) for n = 1 contains
configurations making the companion Lagrangian constant, i.e. solutions of the HJ equation.
Assuming the constant c to be non-zero (and rescaled to one) and Fµ(φ) = βµF(φ) with a
constant vector βµ, we haveF(φ) = 1/βµxµ. On the other hand, the form of the functionF(φ)

is fixed by the condition L = M , since it breaks the covariance of the companion equation
under φ → φ′,

L = √
φµφµ =

√
FµFµ

(F ′
νxν)

2
=
√
β2

F 2

F ′ = M (53)

where the HJ equation in the base space became a first-order differential equation in the φ-
space, which is solved for F(φ) as −M/

√
β2φ. This leads to the standard solution of the HJ

equation, φ = pµxµ, where pµ = −Mβµ/
√
β2 with p2 = M2.
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In the above particle case, such a standard HJ solution can be easily obtained from the
HJ equation itself. However, in the general p-brane cases, the companion equation equipped
with the remarkably general covariance under field redefinitions would become a good starting
point to find interesting HJ solutions. It is also intriguing to study the companion equations
for general (n, d) in their own right as a possible extension of the solvable Bateman equation,
which is now under progress.
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